Abstract
AbstractElectrophysiological recordings from hippocampus and cortex have demonstrated that one of the most prominent effects of serotonin in these regions is a membrane hyperpolarization that effectively inhibits neuronal activity. The use of the in vitro brain slice preparation has allowed for detailed pharmacological and physiological studies of this response. Pharmacological analysis using agonists and antagonists indicates that these responses are mediated by activation of receptors of the 5‐HT1A subtype. Buspirone, ipsapirone and 8‐OHDPAT are all partial agonists at this receptor with 8‐OHDPAT exhibiting an intrinsic activity approximately one‐fourth that of serotonin. The ability of 5‐HT1A receptor agonists to elicit a hyperpolarization is dependent on intracellular GTP, suggesting the involvement of a G protein in the transmembrane signalling mechanism. In agreement with this idea, injection of the stable GTP analog GTPγS renders the serotonin induced hyperpolarization irreversible, while GDPβS blunts its effects and pertussis toxin pretreatment blocks it. The 5‐HT1A receptor induced hyperpolarization is mediated by an increase in potassium conductance. While the identity of the potassium channel remains to be determined, its basic characteristics identify it as belonging to a general class of inwardly rectifying G protein activated potassium channels ubiquitously distributed in neuronal and cardiac muscle tissues. In the rat hippocampus and cortex, most pyramidal cells co‐express 5‐HT1A with either 5‐HT4 or 5‐HT2 receptors, respectively, which in turn act to increase the ability of strong stimuli to excite these cells. As a result the net effect of serotonin on membrane excitability is dependent on the strength of incoming stimuli. Weak stimuli are depressed by the coactivation of these receptor subtypes while strong stimuli are enhanced. Thus the effects of selective 5‐HT1A ligands are likely to depend not only on their direct effect on membrane excitability but also on how they alter ongoing serotonergic neurotransmission. © 1992 Wiley‐Liss, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.