Abstract

In the present study, the functional properties and pharmacology of two-pore domain potassium channel (K2P) TREK-1 in primary cultured rat brain astrocytes were investigated. Western blot, patch clamping techniques, and ELISA were used to detect the distribution and function of TREK-1 as well as the expression of brain-derived neurotrophic factor (BDNF) on the primary cultured astrocytes. It was shown that TREK-1 protein expressed in astrocytes was 2.4-fold higher than it was expressed in microglia. Single channel recording via patch clamping showed that the TREK-1 outward currents in astrocytes could be activated by arachidonic acid (AA) or chloroform with the conductance of 113 ± 14 and 120 ± 13pS, respectively. The current was also sensitive to mechanical stretch and intracellular acidification. Negative pressure (-30cm H2O) and acidification of intracellular solution (pH6.8 or 6.3) both enhanced TREK-1 channel open probability significantly. Further pharmacological studies showed that TREK-1 antagonist penfluridol inhibited AA-induced currents, and both penfluridol and methionine (TREK-1 blockers) significantly increased BDNF level in astrocytes by 50%. These results indicated that TREK-1 channel current was a major component of K2P currents in astrocytes. TREK-1 channels might play important roles in regulating the function of astrocytes and might be used as a drug target for neuroprotection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call