Abstract
ABSTRACT The interaction between L-type voltage-dependent Ca2+ channels and the endocannabinoid system (eCs) in synaptic plasticity is controversial. In the present research, the impact of acute administration of URB597, as an endocannabinoid breakdown inhibitor, was evaluated after chronic injection of verapamil, as a Ca2+ channels blocker, on inducing long-term potentiation (LTP) in the rat’s hippocampal dentate gyrus (DG). Treatment of male Wistar rats was done using intraperitoneal(i.p) injection of verapamil hydrochloride (n = 8) and saline (n = 10), as the solvent of verapamil once a day within 13 days. Anesthetization was done by i.p injection of urethane and the rats were located in the stereotaxic apparatus for surgery, electrode implantation, and field potential recording. After observing a steady-state baseline response, saline or URB597 were injected (n = 9). Measurement of the population spike (PS) amplitude and slope of field excitatory postsynaptic potentials (fEPSPs) in the DG region was performed as a result of perforant pathway (PP) stimulation. Our treatments could inhibit LTP. Our results indicated that the chronic administration of verapamil produced a significant decrease in the slope of fEPSP and PS amplitude. Also, acute URB597 administration decreased the slope of fEPSP and PS amplitude compared to the saline group. Moreover, URB597 administration in combination with chronic administration of verapamil produced a greater decrease in fEPSP slope and PS amplitude than the saline group. These findings indicated that verapamil and URB597 disrupted LTP induction in the DG. Moreover, an interaction was observed between Ca2+ channels and eCs. Therefore, the eCs possibly play a selective role in synaptic plasticity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.