Abstract

Electromyographic (EMG) studies were carried out with the genetically spastic mouse ( spa, autosomal recessive), obtained from matings of B6C3a/a, spa/+heterozygotes. Spastic homozygotes exhibited high amplitude repetitive EMG burst during spontaneous activity. Following an electrical stimulus to hindlimb or forelimb, high amplitude sterotyped EMG bursts were recorded from contralateral limbs in spastic mice, but were not observed in phenotypically unaffected littermates or normal C57BL/6J mice. The timing and latency of this stereotyped response to an electrical stimulus was consistent with the participation of spinal cord neuronal pathways. In normal C57BL/6J mice the administration of strychnine (0.65 mg/kg), but not picrotoxinin (up to convulsant doses), reproduced all of the behavioral and EMG features observed in spastic homozygotes. We hypothesize that the symptoms in the spastic mutant may result from a deficiency of strychnine-sensitive (presumably glycinergic) inhibition in the spinal cord.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.