Abstract

INTRODUCTIONThe chemical senses smell and taste detect and discriminate an enormous diversity of environmental stimuli and provide fascinating but challenging models to investigate how sensory cues are represented in the brain. Important stimulus coding events occur in peripheral sensory neurons, which express specific combinations of chemosensory receptors with defined ligand-response profiles. These receptors convert ligand recognition into spatial and temporal patterns of neural activity, which are transmitted to and interpreted in central brain regions. Drosophila provides an attractive model to study chemosensory coding, because it possesses relatively simple peripheral olfactory and gustatory systems that display many organizational parallels to those of vertebrates. Moreover, virtually all of the peripheral chemosensory neurons are easily accessible for physiological analysis, because they are exposed on the surface of sensory organs in specialized sensory hairs called sensilla. In recent years, improvements in microscopy and instrumentation for electrode manipulation have opened up the much smaller Drosophila system to electrophysiological techniques, powerfully complementing many years of molecular genetic studies. As with most electrophysiological methods, there is probably no substitute for learning this technique directly from a laboratory in which it is already established. This protocol describes the basics of setting up the electrophysiology rig and stimulus delivery device, sample preparation, and how to perform and analyze recordings of odor-evoked activity from Drosophila olfactory sensilla.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.