Abstract

The lumbar spinal cord of the rat contains two sexually dimorphic motor nuclei, the spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN). Postnatally, SNB and DLN motoneurons grow substantially and reach their adult morphology by 7 weeks of age. The masculinization of SNB and DLN motoneuron dendrites depends upon steroid hormones. After early castration, the growth of SNB and DLN dendrites is markedly attenuated, but testosterone replacement restores this growth. In the SNB, initial dendritic growth is also supported in castrates treated with estrogen. By using castration and hormone replacement techniques, we examined the development of DLN motoneuron morphology in estrogen-treated castrated rats to determine if estrogen also supports the growth of DLN motoneurons. In addition, given that dorsal root ganglia may be a site of estrogen action, we tested the hypothesis that estrogen acts at primary afferents to support DLN dendritic growth. Thus, we attempted to block the potential trophic effect of estrogen by performing unilateral dorsal rhizotomies in estrogen-treated castrates. DLN motoneuron morphology was analyzed at 4 and 7 weeks of age by using cholera toxin horseradish peroxidase (BHRP) histochemistry. As found for SNB motoneurons, estrogen treatment transiently supported development. DLN motoneurons in estrogen-treated castrates developed normally through 4 weeks of age, but by 7 weeks, DLN motoneuron morphology in estrogen-treated castrates was no longer different from that in oil-treated castrates. Moreover, deafferentation via unilateral dorsal rhizotomy did not inhibit estrogen's ability to masculinize the early development of DLN motoneurons. Thus, the trophic effect of estrogen did not appear to act via the dorsal root ganglia to support the early postnatal development of DLN motoneurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.