Abstract

The atrioventricular node (AVN) is a key component of the cardiac pacemaker-conduction system. This study investigated the electrophysiology of cells isolated from the AVN region of adult mouse hearts, and compared murine ionic current magnitude with that of cells from the more extensively studied rabbit AVN. Whole-cell patch-clamp recordings of ionic currents, and perforated-patch recordings of action potentials (APs), were made at 35–37°C. Hyperpolarizing voltage commands from −40 mV elicited a Ba2+-sensitive inward rectifier current that was small at diastolic potentials. Some cells (Type 1; 33.4 ± 2.2 pF; n = 19) lacked the pacemaker current, If, whilst others (Type 2; 34.2 ± 1.5 pF; n = 21) exhibited a clear If, which was larger than in rabbit AVN cells. On depolarization from −40 mV L-type Ca2+ current, ICa,L, was elicited with a half maximal activation voltage (V0.5) of −7.6 ± 1.2 mV (n = 24). ICa,L density was smaller than in rabbit AVN cells. Rapid delayed rectifier (IKr) tail currents sensitive to E-4031 (5 μmol/L) were observed on repolarization to −40 mV, with an activation V0.5 of −10.7 ± 4.7 mV (n = 8). The IKr magnitude was similar in mouse and rabbit AVN. Under Na-Ca exchange selective conditions, mouse AVN cells exhibited 5 mmol/L Ni-sensitive exchange current that was inwardly directed negative to the holding potential (−40 mV). Spontaneous APs (5.2 ± 0.5 sec−1; n = 6) exhibited an upstroke velocity of 37.7 ± 16.2 V/s and ceased following inhibition of sarcoplasmic reticulum Ca2+ release by 1 μmol/L ryanodine, implicating intracellular Ca2+ cycling in murine AVN cell electrogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.