Abstract

The vomeronasal system is involved in the detection of pheromones in many mammals. Vomeronasal sensory neurons encode the behaviorally relevant information into action potentials that are directly transmitted to the accessory olfactory bulb. We developed a model of the electrical activity of mouse basal vomeronasal sensory neurons, which mimics both the voltage-gated current properties and the firing behavior of these neurons in their near-native state, using a minimal number of parameters. Data were obtained by recordings with the whole-cell voltage-clamp or current-clamp techniques from mouse basal vomeronasal sensory neurons in acute slice preparations. The resting potential ranged from -50 to -70 mV, and current injections of less than 2-10 pA induced tonic firing in most neurons. The experimentally determined firing frequency as a function of injected current was well described by a Michaelis-Menten equation and was exactly reproduced by the model, which could be used in combination with future models that will include details of the mouse vomeronasal transduction cascade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.