Abstract

Recent advances in the field of cellular reprogramming have opened a route to studying the fundamental mechanisms underlying common neurological disorders. High-density microelectrode-arrays (HD-MEAs) provide unprecedented means to study neuronal physiology at different scales, ranging from network through single-neuron to subcellular features. In this work, HD-MEAs are used in vitro to characterize and compare human induced-pluripotent-stem-cell-derived dopaminergic and motor neurons, including isogenic neuronal lines modeling Parkinson's disease and amyotrophic lateral sclerosis. Reproducible electrophysiological network, single-cell and subcellular metrics are used for phenotype characterization and drug testing. Metrics, such as burst shape and axonal velocity, enable the distinction of healthy and diseased neurons. The HD-MEA metrics can also be used to detect the effects of dosing the drug retigabine to human motor neurons. Finally, it is shown that the ability to detect drug effects and the observed culture-to-culture variability critically depend on the number of available recording electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.