Abstract
Combining human brain organoids holds great potential in recapitulating the human brain's histological features and modeling neural disorders. However, current combined-brain organoid models focus on the internal interactions between different brain regions. In this study, we develop an engineered brain-spinal cord assembloid (eBSA) by coculturing cerebral organoids (COs) and motor neuron spheroids (MNSs). By connecting COs and MNSs, we generate a terminal for signal transfer from the brain to the whole body by mimicking the brain-spinal cord connection. After the formation of COs from human induced pluripotent stem cells and MNSs from human neural stem cells, MNSs are prepatterned into specific CO regions and assembled to form an eBSA. Caffeine serves as a neurochemical model to demonstrate neural signal transmission. When the MNSs in the eBSA contact the multielectrode array, the eBSA successfully shows an increased neural spiking speed on the motor neuron region by caffeine treatment, which means that neural stimulation signals transfer from the COs to MNSs. The neural stimulation effects of caffeine are tested on the MNSs only to prove the eBSA system's neural signal transmission, and there were no stimulus effects. Our results demonstrate that the eBSA system can monitor a caffeine-mediated excitatory signal as an output signal from the brain to the spinal cord. We believe that the eBSA system can be utilized as a screening platform to validate the stimulus signal transfer by neurochemicals. In addition, the accumulation of understanding of the neural signal transfer from CNS to PNS will provide better knowledge for controlling muscle actuators with the nervous system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.