Abstract

Membrane fusion and fission are indispensable parts of intracellular membrane recycling and transport. Electrophysiological techniques have been instrumental in discovering and studying fusion and fission pores, the key intermediates shared by both processes. In cells, electrical admittance measurements are used to assess in real time the dynamics of the pore conductance, reflecting the nanoscale transformations of the pore, simultaneously with membrane leakage. Here, we described how this technique is adapted to in vitro mechanistic analyses of membrane fission by dynamin 1 (Dyn1), the protein orchestrating membrane fission in endocytosis. We reconstitute the fission reaction using purified Dyn1 and biomimetic lipid membrane nanotubes of defined geometry. We provide a comprehensive protocol describing simultaneous measurements of the ionic conductance through the nanotube lumen and across the nanotube wall, enabling spatiotemporal correlation between the nanotube constriction by Dyn1, leading to fission and membrane leakage. We present examples of "leaky" and "tight" fission reactions, specify the resolution limits of our method, and discuss how our results support the hemi-fission conjecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.