Abstract

Electrophysiological assessment provides valuable information on physiological and pathophysiological characteristics of human swallowing. Here, new electrophysiological measures for the evaluation of oropharyngeal swallowing were assessed: (1) the activation pattern of the submental/suprahyoid EMG activity (SHEMG); (2) the reproducibility of the oral and pharyngeal phases of swallowing, by calculating the similarity index (SI) of the SHEMG (SI-SHEMG) and of the laryngeal-pharyngeal mechanogram (SI-LPM) during repeated swallows; and (3) kinesiological measures related to the LPM. An electrophysiological-mechanical method for measuring the activation pattern of the SHEMG, the SI-SHEMG, and the SI-LPM, and maximal LPM velocity and acceleration during swallowing was applied in 65 healthy subjects divided into three age groups (18-39, 40-59, 60 years or over). All the measures were assessed during three trials of eight consecutive swallows of different liquid bolus volumes (3, 12, and 20 ml). A high overall reproducibility of oropharyngeal swallowing in healthy humans was recorded. However, while values of SI-SHEMG were similar in all the age groups, the SI-LPM was found to fall significantly in the older age group. Both the SI-SHEMG and the SI-LPM were found to fall with increasing bolus volumes. The activation pattern of the SHEMG and the LPM kinesiological measures were differently modified by bolus volume and age in the older subjects with respect to the others. We describe a new approach to the electrophysiological study of swallowing based on computed semi-automatic analyses. Our findings provide insight into some previously uninvestigated aspects of oropharyngeal swallowing physiology, considered in relation to bolus volume and age. The new electrophysiological measures here described could prove useful in the clinical setting, as it is likely that they could be differently affected in patients with different kinds of dysphagia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.