Abstract

β, β′-Iminodipropionitrile (IDPN) was given to cats (50 mg/kg/week for 5 weeks) to induce giant axonal swellings in the proximal internodes of motor axons. Conventional intracellular recording techniques were used to investigate the influence of the axon swellings on axonal impulse conduction and generation of action potentials in unidentified lumbosacral motoneurons (MN). Action potentials recorded from axon swellings, verified by lack of orthodromically or antidromically elicited EPSPs or IPSPs, afterhyperpolarization potentials or initial segment-somaldendritic (IS-SD) inflections, were variable in shape. Some were indistinguishable from recordings in normal axons. Component or extra potentials occurred in 45% of recordings from axon swellings; their position on the action potential depended on the direction of impulse invasion into the swelling. Many action potentials were broad, with amplitudes less than 30 mV. Impulse conduction was estimated to be blocked in 19% of motor axons tested. Action potentials recorded in MN of IDPN treated cats resembled in many aspects those recorded in chromatolytic MN, with increased latencies upon antidromic stimulation and decreased IS conduction times and SD thresholds; other parameters did not differ significantly. The minimal interval between two stimuli which each evoked action potentials increased from3.3 ± 0.1to5.8 ± 0.5ms. IS-SD portions of the action potentials could not be fractionated in 49% of cells regardless of interpulse interval. Many MN failed to follow frequencies as low as 10 Hz. Delayed depolarizations were observed in 14% of MN recordings. Repetitive action potentials were elicited by single stimuli in 14% of MN and more frequently by orthodromic than antidromic stimulation. Action potentials could often be elicited in the same MN by stimulation of more than one ventral root filament. The incidence of this ephaptic transmission or crosstalk was estimated to be 12%. The findings are discussed in terms of the influence of proximal axon swellings on action potential generation in MN, propagation along non-homogeneous regions of axons and functional chromatolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call