Abstract

The flying squirrel (Glaucomys volans) is a strongly nocturnal rodent. Previous anatomical observations suggested that the retina of this animal contains some cone-like receptors in addition to large numbers of rods. Evidence for duplicity of function in this visual system was obtained from an examination of three indices of visual activity: the electroretinogram (ERG), the isolated PIII retinal response, and the visually evoked cortical potential (VECP). The spectral sensitivity of the dark-adapted flying squirrel is similar to that of other mammals — it has a 500 nm peak (Figs. 3, 8). Responses of the ERG and isolated PIII to flickering light indicate the operation of two processes (Figs. 4, 7), one of which is unable to follow flickering light at repetition rates above 10–15 Hz. Spectral sensitivity measurements reveal that these two processes have different spectral sensitivities. The photopic mechanism in the flying squirrel visual system has peak sensitivity at about 520 nm (Figs. 5, 7, 9). The effects of steady light adaptation are much more obvious in the cortical potentials than they are in the retinal potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.