Abstract
Tools assaying the neural networks that modulate consciousness may facilitate tracking of recovery after acute severe brain injury. The ABCD framework classifies resting-state EEG into categories reflecting levels of thalamocortical network function that correlate with outcome in post-cardiac arrest coma. In this longitudinal cohort study, we applied the ABCD framework to 20 patients with acute severe traumatic brain injury requiring intensive care (12 of whom were also studied at ≥6-months post-injury) and 16 healthy controls. We tested four hypotheses: 1) EEG ABCD classifications are spatially heterogeneous and temporally variable; 2) ABCD classifications improve longitudinally, commensurate with the degree of behavioral recovery; 3) ABCD classifications correlate with behavioral level of consciousness; and 4) the Coma Recovery Scale-Revised arousal facilitation protocol yields improved ABCD classifications. Channel-level EEG power spectra were classified based on spectral peaks within pre-defined frequency bands: ‘A’ = no peaks above delta (<4 Hz) range (complete thalamocortical disruption); ‘B’ = theta (4–8 Hz) peak (severe thalamocortical disruption); ‘C’ = theta and beta (13–24 Hz) peaks (moderate thalamocortical disruption); or ‘D’ = alpha (8–13 Hz) and beta peaks (normal thalamocortical function). Acutely, 95% of patients demonstrated ‘D’ signals in at least one channel but exhibited within-session temporal variability and spatial heterogeneity in the proportion of different channel-level ABCD classifications. By contrast, healthy participants and patients at follow-up consistently demonstrated signals corresponding to intact thalamocortical network function. Patients demonstrated longitudinal improvement in ABCD classifications (p < .05) and ABCD classification distinguished patients with and without command-following in the subacute-to-chronic phase of recovery (p < .01). In patients studied acutely, ABCD classifications improved after the Coma Recovery Scale-Revised arousal facilitation protocol (p < .05) but did not correspond with behavioral level of consciousness. These findings support the use of the ABCD framework to characterize channel-level EEG dynamics and track fluctuations in functional thalamocortical network integrity in spatial detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.