Abstract

Noninvasive electrophysiological recording methods were used to study the effects of prolonged food deprivation on the postembryonic patterns of giant fiber growth, as indicated by age-dependent changes in giant fiber conduction velocity and diameter, in the earthworm, Eisenia foetida. In addition, giant fiber growth was compared to patterns of somatic growth, as indicated by increases in body weight. Within a wide range of food deprivation levels, normal age-dependent increases in conduction velocity and diameter occurred in spite of marked stunting of somatic growth. Stunting of giant fiber velocity and diameter occurred only during severe food deprivation, but giant fiber spikes and associated rapid escape responses were still readily evoked. The stunting effects of prolonged and severe food deprivation upon giant fiber conduction velocity and diameter were readily reversed by replenishing food. The results demonstrate the persistence of rapid escape reflex functioning, as well as the priority of giant fiber growth relative to somatic growth, during severe and prolonged food deprivation. As a consequence of the priority of giant fiber growth during limited food availability, giant fiber conduction velocity appears to be a more reliable predictor of animal age then body size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call