Abstract

BackgroundSub-anesthetic ketamine doses rapidly reduce depressive symptoms, although additional investigations of the underlying neural mechanisms and the prediction of response outcomes are needed. Electroencephalographic (EEG)-derived measures have shown promise in predicting antidepressant response to a variety of treatments, and are sensitive to ketamine administration. This study examined their utility in characterizing changes in depressive symptoms following single and repeated ketamine infusions. MethodsRecordings were obtained from patients with treatment-resistant major depressive disorder (MDD) (N = 24) enrolled in a multi-phase clinical ketamine trial. During the randomized, double-blind, crossover phase (Phase 1), patients received intravenous ketamine (0.5 mg/kg) and midazolam (30 μg/kg), at least 1 week apart. For each medication, three resting, eyes-closed recordings were obtained per session (pre-infusion, immediately post-infusion, 2 h post-infusion), and changes in power (delta, theta1/2/total, alpha1/2/total, beta, gamma), alpha asymmetry, theta cordance, and theta source-localized anterior cingulate cortex activity were quantified. The relationships between ketamine-induced changes with early (Phase 1) and sustained (Phases 2,3: open-label repeated infusions) decreases in depressive symptoms (Montgomery-Åsberg Depression Rating Score, MADRS) and suicidal ideation (MADRS item 10) were examined. ResultsBoth medications decreased alpha and theta immediately post-infusion, however, only midazolam increased delta (post-infusion), and only ketamine increased gamma (immediately post- and 2 h post-infusion). Regional- and frequency-specific ketamine-induced EEG changes were related to and predictive of decreases in depressive symptoms (theta, gamma) and suicidal ideation (alpha). Early and sustained treatment responders differed at baseline in surface-level and source-localized theta. ConclusionsKetamine exerts frequency-specific changes on EEG-derived measures, which are related to depressive symptom decreases in treatment-resistant MDD and provide information regarding early and sustained individual response to ketamine.Clinical Trial Registration: ClinicalTrials.gov: Action of Ketamine in Treatment-Resistant Depression, NCT01945047

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call