Abstract

1. Properties of voltage-dependent Na+ currents were investigated in forty-two dentate granule cells (DGCs) acutely isolated from the resected hippocampus of twenty patients with therapy-refractory temporal lobe epilepsy (TLE) using the whole-cell patch-clamp technique. 2. Depolarizing voltage commands elicited large, rapidly activating and inactivating Na+ currents (140 pS microm-2; 163 mM extracellular Na+) that were reduced in amplitude by lowering the Na+ gradient (43 mM extracellular Na+). At low temperatures (8-12 C), the time course of Na+ currents slowed and could be well described by the model of Hodgkin & Huxley. 3. Na+ currents were reversibly blocked by tetrodotoxin (TTX) and saxitoxin (STX) with a half-maximal block of 4.7 and 2.6 nM, respectively. In order to reduce series resistance errors, the Na+ current was partially blocked by low toxin concentrations (10-15 nM) in the experiments described below. Under these conditions, Na+ currents showed a threshold of activation of about -50 mV, and the voltages of half-maximal activation and inactivation were -29 and -55 mV, respectively. 4. The time course of recovery from inactivation could be described with a double-exponential function (time constants, 3-20 and 60-200 ms). The rapid and slow time constants showed a distinct voltage dependence with maximal values around -55 and -80 mV, respectively. These properties contributed to a reduction of the Na+ currents during repetitive stimulation that was more pronounced with higher stimulation frequencies and also showed a dependence on the holding potential. 5. In summary, the most striking features of DGC Na+ currents were the large current density and the presence of a current component showing a slow recovery from inactivation. Our data provide a basis for comparison with properties of Na+ currents in animal models of epilepsy, and for the study of drug actions in therapy-refractory epilepsy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call