Abstract

N,No-[oxybis(2,1-ethanediyloxy-2,1-ethanediyl)]bis(4-methyl)- benzenesulfonamide (OMBSA) is a hit compound with potent voltage-gated K+ (Kv) channel-blocking activities that was found while searching the MDL Available Chemicals Directory with a virtual screening approach. In the present study, the blocking actions of OMBSA on Kv channels and relevant mechanisms were characterized. Whole-cell voltage-clamp recording was made in acutely dissociated hippocampal CA1 pyramidal neurons of newborn rats. Superfusion of OMBSA reversibly inhibited both the delayed rectifier (I(K)) and fast transient K+ currents (I(A)) with IC50 values of 2.1+/-1.1 micromol/L and 27.8+/-1.5 micromol/L, respectively. The inhibition was voltage independent. OMBSA markedly accelerated the decay time course of IK, without a significant effect on that of I(A). OMBSA did not change the activation, steady-state inactivation of IK, and its recovery from inactivation, but the compound caused a significant hyperpolarizing shift of the voltage dependence of the steady-state inactivation of I(A) and slowed down its recovery from inactivation. Intracellular dialysis of OMBSA had no effect on both I(K) and I(A). The results demonstrate that OMBSA blocks both I(K) and I(A) through binding to the outer mouth of the channel pore, as predicted by the molecular docking model used in the virtual screening. In addition, the compound differentially moderates the inactivation kinetics of the K+ channels through allosteric mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.