Abstract

BackgroundHereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. We set out for an electrophysiological characterisation of motor and sensory tracts in patients with HSP.MethodsWe clinically and electrophysiologically examined a cohort of 128 patients with genetically confirmed or clinically probable HSP. Motor evoked potentials (MEPs) to arms and legs, somato-sensory evoked potentials of median and tibial nerves, and nerve conduction studies of tibial, ulnar, sural, and radial nerves were assessed.ResultsWhereas all patients showed clinical signs of spastic paraparesis, MEPs were normal in 27% of patients and revealed a broad spectrum with axonal or demyelinating features in the others. This heterogeneity can at least in part be explained by different underlying genotypes, hinting for distinct pathomechanisms in HSP subtypes. In the largest subgroup, SPG4, an axonal type of damage was evident. Comprehensive electrophysiological testing disclosed a more widespread affection of long fibre tracts involving peripheral nerves and the sensory system in 40%, respectively. Electrophysiological abnormalities correlated with the severity of clinical symptoms.ConclusionsWhereas HSP is primarily considered as an upper motoneuron disorder, our data suggest a more widespread affection of motor and sensory tracts in the central and peripheral nervous system as a common finding in HSP. The distribution patterns of electrophysiological abnormalities were associated with distinct HSP genotypes and could reflect different underlying pathomechanisms. Electrophysiological measures are independent of symptomatic treatment and may therefore serve as a reliable biomarker in upcoming HSP trials.

Highlights

  • Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract

  • To analyse the spread of long fibre tract affection in HSP and to explore potential effects of different pathomechanisms in distinct genotypes we studied motor and sensory involvement of the central and peripheral nervous system by clinical and electrophysiological means in a representative cohort of HSP patients

  • A clinical sensory deficit was obvious in 56% of patients, a peripheral motor neuropathy was clinically suspected in 18% of patients, and 22% of patients had upper limb spasticity in addition to spastic paraparesis

Read more

Summary

Introduction

Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. Hereditary spastic paraplegias (HSPs) encompass a group of neurodegenerative disorders with lower limb spasticity due to degeneration of the corticospinal tract as most prominent sign. In addition to this “pure” form, additional neurological and non-neurological symptoms, such as mental retardation, dementia, epilepsy, cerebellar signs, extrapyramidal symptoms, sensory deficits, peripheral. To analyse the spread of long fibre tract affection in HSP and to explore potential effects of different pathomechanisms in distinct genotypes we studied motor and sensory involvement of the central and peripheral nervous system by clinical and electrophysiological means in a representative cohort of HSP patients

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.