Abstract
The high mortality rate associated with acute kidney injury (AKI) is commonly due to progressive, inflammatory multiple organ dysfunction, which often involves neurological complications. The AKI-stimulated mechanisms leading to brain dysfunction are not well understood, which hinders development of new therapeutic avenues to minimize AKI-mediated neural effects. The hippocampal CA1 area is a particularly vulnerable region during AKI but the electrophysiological and inflammatory mechanisms involved in this vulnerability remain largely unknown. Here, we used immunohistochemistry to quantitatively investigate the number of astrocytes expressing glial fibrillary acidic protein (GFAP) as an indicator of inflammation, and whole cell patch clamp to evaluate electrophysiological changes in CA1 at different time points following induction of bilateral renal ischemia (BRI) in male Wistar rats. Further we evaluated the effectiveness of erythropoietin (EPO, 1000 U/kg i.p.) in mitigating BRI-associated changes. Plasma concentrations of blood urea nitrogen (BUN) were significantly enhanced at 24 h, 72 h and 1 week, and creatinine (Cr) was increased at 24 h after reperfusion, which were changes reduced by EPO. BRI led to an increase in CA1 GFAP-positive cells 24 h and 72 h, but not 1 week, after reperfusion, and EPO reversed this effect of BRI at 24 h. Additionally, BRI caused an increase in the peak amplitude and coefficient of variation of CA1 pyramidal neuronal action potentials, which were changes not seen in presence of EPO. When taken together, altered neuronal electrophysiological properties and astrogliosis could contribute to the neurological complications induced by AKI, and EPO offers hope as a potential neuroprotective agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.