Abstract
Although the wake-promoting drug modafinil has been shown to bind quite exclusively to the dopamine transporter (DAT), its action in the brain has been thought to be partially independent from the facilitation of the dopaminergic signals. Here we used electrophysiological and amperometric techniques to investigate the effects of modafinil on the dopaminergic neurons of the substantia nigra pars compacta (SNpc) and on the synaptic overflow of dopamine in the dorsal striatum from the sliced tissue of wild-type and cocaine-insensitive genetically modified mice (DAT-CI). Moreover, we examined the consequences of modafinil administration on the locomotor behavior of wild-type and DAT-CI mice. In in vitro experiments, modafinil inhibited the spontaneous firing discharge of the dopaminergic neurons. More consistently, it potentiated firing inhibition and the membrane responses caused by exogenously applied dopamine on these cells. Furthermore, it augmented the stimulus-evoked outflow of DA in the striatum. Noteworthy, modafinil caused locomotor activation in wild-type mice. On the other hand, neither the electrophysiological nor the behavioral effects of modafinil were detected in DAT-CI animals. These results demonstrate that modafinil potentiates brain dopaminergic signals via DAT inhibition by acting at the same binding site of cocaine. Therefore, this mechanism of action explains most of the pharmacological properties of this compound in the clinical setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Neuroscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.