Abstract

Although rhythmic jaw movement in feeding has been studied in mammals, such as rats, rabbits and monkeys, the cellular and molecular mechanisms underlying it are not well understood. Transgenic and gene-targeting technologies enable direct control of the genetic makeup of the mouse, and have led to the development of a new category of reagents that have the potential to elucidate the cellular and molecular mechanisms of neural networks. The present study attempts to characterize rhythmic jaw movements in the mouse and to demonstrate its relevance to rhythmic jaw movements found in higher mammals using newly developed jaw-tracking systems and electromyograms of the masticatory muscles. The masticatory sequence of the mouse during feeding was classified into two stages, incision and chewing. Small and rapid (8 Hz) open–close jaw movements were observed during incision, while large and slow (5 Hz) open–close jaw movements were observed during chewing. Integrated electromyograms of the masseteric and digastric muscles were larger during chewing than those observed during incision. Licking behavior was associated with regular (8 Hz), small open–close jaw movements with smaller masseteric activity than those observed during mastication. Grooming showed variable patterns of jaw movement and electromyograms depending on the grooming site. These results suggest that there are neuronal mechanisms producing different frequencies of rhythmic jaw movements in the mouse, and we conclude that the mouse is useful for understanding rhythmic jaw movements in higher mammals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call