Abstract

Recently, methods for creating three-dimensional (3-D) human skeletal muscle tissues from myogenic cell lines have been reported. Bioengineered muscle tissues are contractile and respond to electrical and chemical stimulation. In this study, we provide an electrophysiological analysis of healthy and dystrophic 3-D bioengineered skeletal muscle tissues, focusing on Duchenne muscular dystrophy (DMD). We enlist the 3-D in vitro model of DMD muscle tissue to evaluate muscle cell electrical properties uncoupled from presynaptic neural inputs, an understudied aspect of DMD. Our data show that previously reported electrophysiological aspects of DMD, including effects on membrane potential and membrane resistance, are replicated in the 3-D muscle tissue model. Furthermore, we test a potential therapeutic compound, poloxamer 188, and demonstrate capacity for improving the membrane potential in DMD muscle. Therefore, this study serves as a baseline for a new in vitro method to examine potential therapies for muscular disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call