Abstract

Intracellular free calcium concentration [Ca 2+] IN has been extensively studied as a major feedback element, transducing endogenous levels of electrical activity into an intracellular signal, in the context of modeling activity-dependent changes of ionic conductances of a neuronal membrane patch through slow biochemical subcellular mechanisms. However, distinct patterns of activity may induce similar mean levels in [Ca 2+] IN so that a multiple sensing mechanism, integrating and matching the features of calcium temporal dynamics over various time scales, is needed to overcome such ambiguous situations. In the present research, we investigate the possible role of a metabolic sensor, related to the power dissipated by the passive ion transport through channels, as an alternative candidate in intracellular calcium independent signal transduction of the electrophysiological activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.