Abstract

The photosynthetic membranes of Anacystis nidulans R2 were examined electrophoretically following solubilization with lithium dodecyl sulfate. Electrophoresis yielded six prominent chlorophyll-containing bands. In addition, five polypeptides were observed which possessed heme-dependent peroxidase activity, monitored by incubating gels with 3,3′,5,5′-tetramethylbenzidine plus hydrogen peroxide. One such polypeptide, at 105 kdaltons, was removed by repeated washing of the membranes. Four remaining peroxidase-active polypeptides were observed at 7.2, 13.5, 18.5 and 33 kdaltons. Further examination of these four polypeptides yielded the following results. (1) The mobility of the 33 kdalton polypeptide was altered from 29 to 33 kdaltons upon heating (70°C) during membrane solubilization. (2) All four polypeptides showed stable heme-protein associations in the presence of 8 M urea; however, in the presence of urea, alterations in protein mobility were observed for each poly-peptide and only two (at 13.5 and 33 kdaltons) showed peroxidase activity following heating (70°C) during membrane solubilization. (3) The presence of thiols during membrane solubilization at 0°C was required to observe peroxidase activity at 7.2 kdaltons. These results, when compared to known properties of isolated cytochromes, suggest that the four polypeptides characterized here correspond to the subunits of photosynthetic cytochromes. Electrophoretic assessment of maize mutants lacking cytochrome f and b 6 activity supports this suggestion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.