Abstract

Prolidase (PLD) plays a crucial role as a dipeptidase in various physiological processes, specifically involved in the cleavage of proline-containing dipeptides for efficient recycling of proline. The accurate determination of PLD activity holds significant importance in clinical diagnosis. Herein, a solid-state electrochemiluminescence (ECL) biosensor was developed to address the urgent need for PLD assay. The Ru(bpy)32+ was electrophoretically deposited within the nanochannels of vertically-ordered mesoporous silica film (VMSF) on indium tin oxide (ITO) electrodes. The Ru(bpy)32+-deposited VMSF/ITO (Ru-VMSF/ITO) exhibited a remarkable ECL response towards proline, attributed to the enhanced concentration of the reactants and improved electron transfer resulting from the nanoconfinement effect. As PLD specifically enzymolyzed the Gly-Pro dipeptide to release proline, a proline-mediated biosensor was developed for PLD assay. Increased PLD activity led to enhanced release of proline into the porous solid-state ECL sensors, resulting in a more robust ECL signal. There was a linear relationship between ΔECL intensity and logarithmic concentration of PLD in the range of 10–10000 U/L, with a detection limit of 1.98 U/L. Practical tests demonstrated the reliability and convenience of the proposed bioassay, making it suitable for widespread application in PLD assays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call