Abstract
For the first time, an electrophoretic deposition (EPD) method has been developed for the deposition of polymethylmethacrylate (PMMA) and PMMA-alumina films for biomedical implant applications. The proposed biomimetic approach was based on the use of a bile salt, sodium cholate (NaCh), which served as a multifunctional solubilizing, charging, dispersing and film-forming agent. Investigations revealed PMMA-Ch− and PMMA-alumina interactions, which facilitated the deposition of PMMA and PMMA-alumina films. This approach allows for the use of a non-toxic water-ethanol solvent for PMMA. The proposed deposition strategy can also be used for co-deposition of PMMA with other functional materials. The PMMA and composite films were tested for biomedical implant applications. The PMMA-alumina films showed statistically improved metabolic results compared to both the bare stainless steel substrate and pure PMMA films. Alkaline phosphatase (ALP) activity affirmed the bioactivity and osteoconductive potential of PMMA and composite films. PMMA-alumina films showed greater ALP activity than both the PMMA-coated and uncoated stainless steel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.