Abstract

Electrophoretic deposition (EPD) is a technique that uses electric field to deposit particles onto a conductive substrate. In this study, EPD technique has been utilized for fabrication of acid functionalized multi-walled carbon nanotubes (f-MWCNTs) and polyaniline (PANi) or denoted as (f-MWCNTs-PANi) nanocomposite film. The nanocomposite was prepared using ex-situ synthesis. This study revealed that the f-MWCNTs and protonated PANi in dimethyl formamide (DMF) can be well dispersed with addition of magnesium nitrate hexahydrate, Mg (NO3)2.6H2O. The fabricated films were characterized by Fourier Transform-Infrared Spectroscopy (FT-IR) and X-Ray Photoelectron Spectroscopy (XPS). Their surface morphologies were characterized by Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). FT-IR results indicate the presence of carboxyl groups in f-MWCNTs spectrum. The presence of PANi was detected in the spectrum of f-MWCNTs-PANi nanocomposite. These results were further supported by FESEM and TEM results that show the morphology of f-MWCNTs and PANi coating around their sidewalls. The use of Mg (NO3)2.6H2O as dispersant for f-MWCNTs and protonated PANi allowed efficient EPD of their nanocomposite film fabrication. The fabricated f-MWCNTs-PANi composite thin film has future application in the development of supercapacitor device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.