Abstract

Aluminum (Al) coatings were deposited on 15CDV6 steel substrates using the electrophoretic deposition (EPD) process and pure propan-2-ol solvent. Key parameters in EPD process are the followings: solvent, additives, deposition conditions, electrical field, cell geometry. Herein, the influence of the applied electric field (0–60 Vcm−1) and the deposition time (0–20 min) was precisely studied as a function of the deposition rate. A uniform and porous Al particle coating was targeted and obtained. Control of the deposit thickness with conservation of the microstructure was possible over a large range of electric fields and deposition times. No thickness limitation was observed in the investigated range of deposition times and electric fields without the need of any added ionic species. Besides, voltage measurements showed that the electric field over the suspension during the EPD process remains high, allowing continuous migration of Al particles to the coated electrode. Overall, the EPD process turned out to be an efficient way to adjust the deposit thicknesses up to 200 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.