Abstract

Li metal is considered a highly desirable anode for next-generation high-energy-density rechargeable lithium batteries. However, irregular Li dendrite formation and infinite relative volume changes prevent the commercial adoption of Li-metal anodes. Here, electrophoretic deposition of black phosphorus (BP) on commercial Cu foam (BP@Cu foam) is reported to regulate Li nucleation for the first time. First-principles calculations reveal that the unique two-dimensional (2D) structure of BP is beneficial to Li intercalation and propagation. Compared with the random Li nucleation and growth on bare Cu foam, Li ions are preferably confined into the BP layers, which induces uniform Li nucleation at the early stage of the Li deposition and guides the following lateral Li growth on BP@Cu foam. In addition, the three-dimensional (3D) porous and conductive framework of Cu foams further mitigate the volume change and dissipate the current density. Attributing to these merits, the BP@Cu foam exhibits significantly enhanced Coulombic efficiency and cycling stability compared with bare Cu foam. In the full-cell configuration paired with a Li4Ti5O12 or LiFePO4 cathode, the BP@Cu foam also boosts the battery performances. This work provides new insights into the development of BP and other elaborate 2D materials for achieving dendrite-free Li-metal anodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.