Abstract

The differential sensitivity of frog twitch and slow-tonic fibers to Ca(2+) and Sr(2+) suggests that these two fiber types express different troponin C (TnC) isoforms. To date, only one TnC isoform from anurans (resembling the mammalian fast-twitch isoform) has been isolated and characterized. In this study, we examined the possibility that anuran striated muscle contains more than one TnC isoform. Toward this end, we determined the TnC isoform composition of 198 single fibers from the rectus abdominis of the cane toad (a mixed slow-tonic and twitch muscle) and of toad cardiac muscle using a method that enables the identification of TnC isoforms on the basis of the effect of Ca(2+) on their electrophoretic mobility. The fibers were typed according to their myosin heavy chain (MHC) isoform composition. The data indicate that striated muscle of the cane toad contains two TnC isoforms, one of which (TnC-t) is present in all fibers displaying only twitch MHC isoforms and the other of which (TnC-T/c) is present in fibers displaying the tonic MHC isoform and in cardiac muscle. For a subpopulation of 15 fibers, the TnC isoform composition was also compared with Ca(2+) and Sr(2+) activation characteristics. Fibers containing the TnC-T/c isoform were approximately 3-fold more sensitive to Ca(2+), approximately 40-fold more sensitive to Sr(2+), and responded to a approximately 4.6-fold broader range of [Ca(2+)] than did fibers containing the TnC-t isoform. The Ca(2+) activation properties of toad fibers containing the TnC-T/c isoform appear to be consistent with the previously reported physiological characteristics of amphibian slow-tonic muscle fibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.