Abstract

Electrophilic aromatic substitution is a fundamental reaction in synthetic chemistry. It converts C-H bonds of sufficiently nucleophilic arenes into C-X and C-C bonds using either stoichiometrically added or catalytically generated electrophiles. These reactions proceed through Wheland complexes, cationic intermediates that rearomatize by proton release. Hence, these high-energy intermediates are nothing but protonated arenes and as such strong Brønsted acids. The formation of protons is an issue in those rare cases where the electrophilic aromatic substitution is reversible. This situation arises in the electrophilic silylation of C-H bonds as the energy of the intermediate Wheland complex is lowered by the β-silicon effect. As a consequence, protonation of the silylated arene is facile, and the reverse reaction usually occurs to afford the desilylated arene. Several new approaches to overcome this inherent challenge of C-H silylation by SE Ar were recently disclosed, and this Minireview summarizes this progress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.