Abstract

The mechanism of oxidative decarboxylation of phenylsulfinylacetic acids (PSAA) by oxo(salen)Cr(V)+ ion in the presence of ligand oxides has been studied spectrophotometrically in acetonitrile medium. Addition of ligand oxides (LO) causes a red shift in the λmax values of oxo(salen) complexes and an increase in absorbance with the concentration of LO along with a clear isobestic point. The reaction shows first-order dependence on oxo(salen)-chromium(V)+ ion and fractional-order dependence on PSAA and ligand oxide. Michaelis–Menten kinetics without kinetic saturation was observed for the reaction. The order of reactivity among the ligand oxides is picoline N-oxide>pyridine N-oxide>triphenylphosphine oxide. The low catalytic activity of TPPO was rationalized. Both electron-withdrawing and electron-donating substituents in the phenyl ring of PSAA facilitate the reaction rate. The Hammett plots are non-linear upward type with negative ρ value for electron-donating substituents, (ρ−=−0.740 to −4.10) and positive ρ value for electron-withdrawing substituents (ρ+=+0.057 to +0.886). Non-linear Hammett plot is explained by two possible mechanistic scenarios, electrophilic and nucleophilic attack of oxo(salen)chromium(V)+-LO adduct on PSAA as the substituent in PSAA is changed from electron-donating to electron-withdrawing. The linearity in the logk vs. Eox plot confirms single-electron transfer (SET) mechanism for PSAAs with electron-donating substituents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.