Abstract

The goal of this research was the electrooxidation (EO) of a nonionic surfactant nonylphenol decaethoxylate (NP-10) in aqueous solution and denim wastewater. Three different configuration systems were evaluated in batch cells using a boron-doped diamond (BDD) anode; copper, iron, and BDD were used as cathodes. The EO process was carried out in a batch process, in a glass cell with a capacity of 1000 mL. The anode surface area was 0.0307 m2 and 1–3 A of current intensity were applied (3, 6, 10 mA/cm2) with an electrolysis time of 240 min for aqueous solution and 780 min for denim wastewater in order to investigate the degradation of the surfactant. The processes were analyzed in terms of chemical oxygen demand (COD) and total organic carbon (TOC). The maximum mineralization efficiency in aqueous solution for the BDD-Cu electrooxidation system was 92.2% for COD and 45.6% for TOC at pH 2 and 3 mA/cm2 of current intensity. For denim wastewater, the removal efficiency was 44.1% for COD and 26.5% for TOC at pH 4.5 and 6 mA/cm2 of current intensity, using a BDD-BDD system. The raw and treated (aqueous solution and denim) wastewater were characterized by UV-Vis and infrared spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.