Abstract
AbstractDearomative annulation of indoles has emerged as a powerful tool for the preparation of polycyclic indoline‐based alkaloids. Compared with well‐established methods towards five‐membered‐ring‐fused indolines, the six‐membered‐ring‐fused indolines are rarely accessed under thermal conditions. Herein, a dearomative [4+2] annulation between different indoles is developed through an electrochemical pathway. This transformation offers a remarkably regio‐ and stereoselective route to highly functionalized pyrimido[5,4‐b]indoles under oxidant‐ and metal‐free conditions. Notably, this electrochemical approach maintains excellent functional‐group tolerance and can be extended as a modification tactic for pharmaceutical research. Preliminary mechanism studies indicate that the electrooxidation annulation proceeds through radical–radical cross‐coupling between an indole radical cation and an N‐centered radical generated in situ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.