Abstract
The influence of the longitudinally non-uniform zeta potential on processes in capillary zone electrophoresis was studied. The velocity field of the electroosmotic flow in capillary tubes is modelled by the Navier-Strokes equations. Their stationary solution represents connective transport of a solute which is taken into account in the continuity equation for the concentration distribution. All equations are studied numerically. The results represent the time evolution of initials forms of sample peaks. These are presented in graphical form for several cases of zeta potentials which are either instructive or closely related to situations encountered in practice. It is shown that plug-like flow in the capillary cannot be expected and that a non-uniform zeta potential generally leads to significant dispersion of peaks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.