Abstract

AbstractThe anisotropy of electrical polarizability of rodlike fragments of DNA has been studied by a number of electro‐optical methods: Kerr effect (combined with flow birefringence), light scattering, diehroism, and fluorescence in an electric field. The most sensitive technique (Kerr effect) has been used to study the variation of the polarizability with the nature and concentration of counteroins. DNA fragments constitute a truly rigid polyelectrolyte of known structure. The value obtained can then be quantitatively compared to the predictions of those of the theories of the longitudinal polarizability of rigid polyelectrolytes which are based on true molecular parameters. The comparison emphasizes the role of the counterion–counterion repulsion. Oosawa's theory seems to represent the best approach but fails to explain the differences observed between monovalent and divalent ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call