Abstract

AbstractWe present an electro‐optic modulator exploiting a metamaterial made of an array of vanadium dioxide nanorods operating in epsilon‐near‐zero regime as the active switching material in a silicon waveguide. The modulator takes advantage of the insulator‐to‐metal transition of vanadium dioxide along with near‐zero effective permittivity to achieve a modulation depth of 19.7 dB µm–1 in a footprint of 1.6 µm × 1 µm over a broad range of wavelengths. Using simulations, we demonstrate how the effective permittivity of the metamaterial can be tuned to a near‐zero value by varying the nanorod geometry to increase the modulation depth. The paper further investigates a novel hexagonal array design using the metamaterial nanorods to obtain a lower insertion loss and high modulation depth. The results provide insight into the design of ultra‐compact epsilon‐near‐zero modulators with high operation frequencies and low insertion losses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call