Abstract

We propose the electro-optic mode deflection devices based on annealed proton exchange (APE) waveguides in lithium niobate with microstructured electrodes. Two mode deflection devices with right-triangle-shaped electrodes (Device A) and isosceles-triangle-shaped electrodes (Device B) are investigated. Taking advantage of the refractive index prism array formed when applying an external voltage to the electrodes, the mode can be deflected. Beam smoothing can be achieved by applying alternating voltages. A∼1.28 μm beam deflection is obtained by applying a voltage (20 V) for Device A. For Device B, a 3.52 μm beam deflection is obtained by applying a -15 V voltage to the electrodes. Device B has a horn-shaped input waveguide which ensures that the output is a quasi-single mode. The mode quality of the deflection beam is also quantified by the CMOS camera. Smoothing the non-uniform density distribution of light beam is confirmed by averaging over 69 images taken by the CMOS camera with alternating voltage. These electro-optic mode deflection devices have potential applications in electro-optic sampling, high-speed optical switch, and beam smoothing of a high-power laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.