Abstract
Motivated by recent experiments, we investigate the electron-vibron coupling in suspended carbon nanotube quantum dots, starting with the electron-phonon coupling of the underlying graphene layer. We show that the coupling strength depends sensitively on the type of vibron and is strongly sample dependent. The coupling strength becomes particularly strong when inhomogeneity-induced electronic quantum dots are located near regions where the vibronic mode is associated with large strain. Specifically, we find that the longitudinal stretching mode and the radial breathing mode are coupled via the strong deformation potential, while twist modes couple more weakly via a mechanism involving modulation of the electronic hopping amplitudes between carbon sites. A special case are bending modes: for symmetry reasons, their coupling is only quadratic in the vibron coordinate. Our results can explain recent experiments on suspended carbon nanotube quantum dots which exibit vibrational sidebands accompanied by the Franck-Condon blockade with strong electron-vibron coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.