Abstract

The electron-stimulated desorption (ESD) yields and energy distributions for potassium (K) and cesium (Cs) atoms have been measured from K and Cs layers adsorbed at 300 K on oxidized molybdenum surfaces with various degrees of oxidation. The measurements were carried out using a time-of-flight method and surface ionization detector. The ESD appearance threshold for K and Cs atoms is independent of the molybdenum oxidation state and is close to the oxygen 2s level ionization energy of 25 eV. Additional thresholds for both K and Cs atoms are observed at about 40 and 70 eV in ESD from layers adsorbed on an oxygen monolayer-covered molybdenum surface; they are associated with resonance processes involving Mo 4p and 4s excitations. The ESD energy distributions for K and Cs atoms consist of single peaks. The most probable kinetic energy of atoms decreases in going from cesium to potassium and with increasing adsorbed metal concentration; it lies in the energy range around 0.35 eV. The K and Cs atom ESD energy distributions from adlayers on an oxygen monolayer-covered molybdenum surface are extended toward very low kinetic energies. The data can be interpreted by means of the Auger stimulated desorption model, in which neutralization of adsorbed alkali-metal ions occurs after filling of holes created by incident electrons in the O 2s, Mo 4s or Mo 4p levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call