Abstract

Mesoscopic structures with characteristic size either of the order of an electron de Broglie wavelength in semiconductors (1 - 10 nm) or close to the optical photon wavelength (100 - 1000 nm) exhibit non-trivial properties due to modified electron or photon density of states. 3D spatial confinement of electrons in nanocrystals (quantum dots) results in size- dependent energies and probabilities of optical transitions. The photon density of states can be modified in structures with strong modulation of the refractive index in three dimensions (photonic crystals) and in microcavities. Because of the essentially different electron and photon wavelengths, electron and photon densities of states can be engineered separately within the same mesostructure. We report here on synthesis and properties of semiconductor quantum dots corresponding to the strong confinement limit embedded either in a photonic crystal exhibiting a pseudogap or in a planar microcavity. We show that the interplay of electron and photon confinement within the same structure opens a way towards novel light sources with controllable spontaneous emission. Spontaneous emission which is not an inherent property of quantum systems but a result of their interaction with electromagnetic vacuum can be either promoted or inhibited depending on the modification of the photon density of states in a given mesostructure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.