Abstract

The new [(η(2)-dppe)(η(5)-C(5)Me(5))Fe(C≡C-1,4-C(6)H(4)C≡C)Ru(η(2) -dppe)(2) C≡C(C(6)H(5))] complex (3-H) and its hexanuclear relative [{(η(2)-dppe)(η(5)-C(5) Me(5))Fe(C≡C-1,4-C(6)H(4)-C≡C)Ru(η(2)-dppe)(2)(C≡C-1,4-C(6)H(4)C≡C)(3)(1,3,5-C(6)H(3))] (4) have been synthesized and characterized. The linear and cubic nonlinear optical properties of these compounds in their various redox states have been studied along with those of the analogous complexes [(η(2)-dppe)(η(5)-C(5)Me(5))Fe(C≡C-1,4-C(6)H(4)C≡C)Ru(η(2)-dppe)(2)R][PF(6)](n) (n=0-2; R=Cl, 2-Cl; R=C≡C(4-C(6)H(4)NO(2)),3-NO(2)). We show that molecules exhibiting large third-order nonlinearities can be obtained by assembling such dinuclear Fe/Ru units around a central 1,3,5-substituted C(6)H(3) core. These data are discussed with a particular emphasis on the large changes in their nonlinear (third-order) optical properties brought about by oxidation. Experimental and computational (DFT) evidence for the electronic structures of these compounds in their various redox states is presented using 3-H(n+) as a prototypical model. Single crystals of this complex in its mono-oxidized state (3-H[PF(6)]) provide the first structural data for such carbon-rich Fe(III) /Ru(II) heteronuclear mixed-valent (MV) systems. Although experimental evidence for the structure of the dioxidized states was more difficult to obtain, the theoretical study reveals that 3-H(2+) can be considered to have a biradical structure with two independent spins. The low-lying absorptions that appear in the near-infrared (NIR) range for all these compounds following oxidation correspond to intervalence charge-transfer (IVCT) bands for the mono-oxidized states and to ligand-to-metal charge-transfer (LMCT) transitions for the dioxidized states. These play a crucial role in the strong optical modulation achieved. The possibility of accessing additional states with distinct linear or nonlinear optical properties is also briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.