Abstract
The rapid proliferation of Electron Multiplying Charge Coupled Devices (EMCCDs) in recent years has revolutionized low light imaging applications. EMCCDs in particular show promise to enable the construction of versatile space astronomy instruments while space-based observations enable unique capabilities such as high-speed accurate photometry due to reduced sky background and the absence of atmospheric scintillation. The Canadian Space Agency is supporting innovation in EMCCD technology by increasing its Technology Readiness Level (TRL) aimed at reducing risk, cost, size and development time of instruments for future space missions. This paper will describe the advantages of EMCCDs compared to alternative low light imaging technologies. We will discuss the specific issues associated with using EMCCDs for high-speed photon counting applications in astronomy. We will show that a careful design provided by the CCD Controller for Counting Photons (CCCP) makes it possible to operate the EMCCD devices at rates in excess of 10 MHz, and that levels of clock induced charge and dark current are dramatically lower than those experienced with commercial cameras. The results of laboratory characterization and examples of astronomical images obtained with EMCCD cameras will be presented. Issues of radiation tolerance, charge transfer efficiency at low signal levels and life time effects on the electron-multiplication gain will be discussed in the context of potential space applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.