Abstract

Electron-impact ionization cross sections for ${\mathrm{H}}_{2}$ are calculated using a nonperturbative time-dependent close-coupling method. In a standard frozen-core approximation, the six-dimensional wave function for the valence target electron and the incident projectile electron is expanded in products of rotational functions. The time-dependent Schr\"odinger equation for the two-electron system is then reduced to a set of close-coupled partial differential equations for the four-dimensional expansion functions in $({r}_{1},{\ensuremath{\theta}}_{1},{r}_{2},{\ensuremath{\theta}}_{2})$ center-of-mass spherical polar coordinates. The nonperturbative close-coupling results are found to be over a factor of 2 lower than perturbative distorted-wave results, but in excellent agreement with experimental measurements, at incident electron energies near the peak of the total integrated cross section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.