Abstract

Pneumatically actuated soft robots have recently shown promise for their ability to adapt to their environment. Previously, these robots have been controlled with electromechanical components, such as valves and pumps, that are typically bulky and expensive. Here, we present an approach for controlling the gaits of soft-legged robots using simple pneumatic circuits without any electronic components. This approach produces locomotive gaits using ring oscillators composed of soft valves that generate oscillating signals analogous to biological central pattern generator neural circuits, which are acted upon by pneumatic logic components in response to sensor inputs. Our robot requires only a constant source of pressurized air to power both control and actuation systems. We demonstrate this approach by designing pneumatic control circuits to generate walking gaits for a soft-legged quadruped with three degrees of freedom per leg and to switch between gaits to control the direction of locomotion. In experiments, we controlled a basic walking gait using only three pneumatic memory elements (valves). With two oscillator circuits (seven valves), we were able to improve locomotion speed by 270%. Furthermore, with a pneumatic memory element we designed to mimic a double-pole double-throw switch, we demonstrated a control circuit that allowed the robot to select between gaits for omnidirectional locomotion and to respond to sensor input. This work represents a step toward fully autonomous, electronics-free walking robots for applications including low-cost robotics for entertainment and systems for operation in environments where electronics may not be suitable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.