Abstract
The effect of temperature on absorption and fluorescence spectra of 4-aminobenzonitrile (ABN) in 1,2-dichloroethane is studied for temperature ranging from 296 K to 343 K. The analysis of absorption and fluorescence band shift on the basis of Bilot and Kawski theory [L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621], for the known dipole moment in the ground state μ g = 5.92 D, and α/ a 3 = 0.5 ( α is the polarizability and a is the Onsager interaction radius of the solute) yields for ABN: (1) the empirical Onsager interaction radius a = 3.3 Å, (2) the dipole moment in the excited S 1 state μ e = 7.14 D which agrees very well with the value of μ e = 7.20 D obtained by Borst et al. [D.R. Borst, T.M. Korter, D.W. Pratt, Chem. Phys. Lett. 350 (2001) 485] from Stark effect studies. Both values of μ e concern free ABN molecule and differ significantly from the values of μ g (8.0 D, 8.5 D and 8.3 D in cyclohexane, benzene and 1,4-dioxane, respectively) obtained by Schuddeboom et al. [W. Schuddeboom, S.A. Jonker, J.M. Warman, U. Leinhos, W. Kühnle, K.A. Zachariasse, J. Phys. Chem. 96 (1992) 10809] from the time-resolved microwave conductivity measurements which are solvent-dependent. The group moment additivity law in the case of ABN molecule is approximately applicable, both in the ground and in the excited electronic state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.