Abstract

Electronically and ionically conductive gels were fabricated by mixing and mechanically grinding neutral tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) in ionic liquids (ILs) like 3-ethyl-1-methylimidazolium dicyanoamide (EMIDCA), 1-ethyl-3-methylimidazolium thiocyanate (EMISCN), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITf(2)N), trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide (P(14,6,6,6)Tf(2)N), and methyl-trioctylammonium bis(trifluoromethylsulfonyl)imide (MOATf(2)N). Charge-transfer TTF-TCNQ crystallites were generated during the mechanical grinding as indicated by the UV-visibile-near-infrared (UV-vis-NIR) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction. The charge-transfer TTF-TCNQ crystallites have a needle-like shape. They form solid networks to gelate the ILs. The gel behavior is confirmed by the dynamic mechanical measurements. It depends on both the anions and cations of the ILs. In addition, when 1-methyl-3-butylimidazolium tetrafluoroborate (BMIBF(4)) and 1-methyl-3-propylimidazolium iodide (PMII) were used, the TTF-TCNQ/IL mixtures did not behave as gels. The TTF-TCNQ/IL gels are both electronically and ionically conductive, because the solid phase formed by the charge-transfer TTF-TCNQ crystallites is electronically conductive, while the ILs are ionically conductive. The gel formation is related to needle-like charge-transfer TTF-TCNQ cyrstallites and the π-π and Coulombic interactions between TTF-TCNQ and ILs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.