Abstract

Electronic transport through ruthenium-based redox-active organometallic molecules is measured by self-assembling diruthenium(III) tetra(2-anilinopyridinate)-di(4-thiolphenylethynyl) (trans-Ru2(ap)4(C'CC6H4S-)2 (A) and trans- Ru2(ap)4((C'CC6H4)2S-)2 (B) molecules in nanogap molecular junctions. Voltage sweeps at a high scan rate show low bias current peaks (at +/-0.35 +/- 0.05 V for A and +/-0.27 +/- 0.05 V for B), which change to plateaus in slow bias scans and a second conductance peak at approximately +/-1.05 +/- 0.15 V. The peaks/plateaus are not observed in the return bias sweeps, possibly due to charge storage in the molecules. The energy states for the molecular orbitals of these molecules as estimated from the conductance peaks are in close agreement with the respective energy values from voltammetric measurements in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.